$39.99
Élevé au pâturage

Grass Fed Bone Marrow.

Agrandir Codeage Grass-Fed Pasture-Raised Bone Marrow Supplement Capsules Front
Agrandir Codeage Grass-fed bone marrow supplement freeze dried non defatted desiccated
Agrandir Grass Fed Bone Marrow Capsule
Agrandir Codeage Grass-Fed Bone Marrow Supplement Facts
20% DE RÉDUCTION
Élevé au pâturage

Grass Fed Bone Marrow.

Extrait d'os entier.

$39.99
Le supplément de moelle osseuse Codeage nourri à l'herbe fournit 3 000 mg d'extrait d'os entier par portion, y compris la moelle osseuse, la matrice osseuse et le cartilage. Cette formule de vitamines pour la moelle osseuse est fabriquée à partir de bovins lyophilisés, non dégraissés et desséchés et contribue à fournir une source unique de nutriments.
  • Le supplément de moelle osseuse nourri à l'herbe Codeage offre 3 000 mg d'extrait d'os entier nourri à l'herbe comprenant de la moelle osseuse, de la matrice osseuse et du cartilage par portion.
  • Ce supplément de vitamines pour la moelle osseuse provient de bœuf de haute qualité, fini à l'herbe et élevé en pâturage. La moelle osseuse peut être une source de cellules spécialisées, de collagène, de facteurs de croissance, d’activateurs liposolubles, d’oligo-éléments et de glycosaminoglycanes.
  • La moelle osseuse Codeage nourrie à l'herbe est fabriquée à partir de bovins lyophilisés, non dégraissés et desséchés.
  • Cette formule de capsule de supplément de moelle osseuse est sans OGM, sans produits laitiers, sans soja et sans gluten. Cette formule de superaliment bovin à base de moelle osseuse est également exempte d'hormones, de liants ou d'agents d'écoulement.
  • Le supplément Codeage Grass-Fed Bone Marrow est fabriqué aux États-Unis avec des ingrédients mondiaux dans une installation certifiée cGMP pour la qualité et la pureté.
Apprendre plus

Bénéficiez de 20 % de réduction aujourd'hui pendant les soldes des fêtes ! Appliqué automatiquement à la caisse.

Non disponible sur les commandes Abonnez-vous et économisez.

Le supplément de moelle osseuse Codeage nourri à l'herbe fournit 3 000 mg d'extrait d'os entier par portion, y compris la moelle osseuse, la matrice osseuse et le cartilage. Cette formule de vitamines pour la moelle osseuse est fabriquée à partir de bovins lyophilisés, non dégraissés et desséchés et contribue à fournir une source unique de nutriments.

Informations sur les suppléments

Informations sur les suppléments

Ingrédients

Extrait d'os nourri à l'herbe (bovin ; matrice osseuse, moelle et cartilage) (sans ESB). Autres ingrédients : Capsule de méthylcellulose.

Product Details

  • Le supplément de moelle osseuse nourri à l'herbe Codeage offre 3 000 mg d'extrait d'os entier nourri à l'herbe comprenant de la moelle osseuse, de la matrice osseuse et du cartilage par portion.
  • Ce supplément de vitamines pour la moelle osseuse provient de bœuf de haute qualité, fini à l'herbe et élevé en pâturage. La moelle osseuse peut être une source de cellules spécialisées, de collagène, de facteurs de croissance, d’activateurs liposolubles, d’oligo-éléments et de glycosaminoglycanes.
  • La moelle osseuse Codeage nourrie à l'herbe est fabriquée à partir de bovins lyophilisés, non dégraissés et desséchés.
  • Cette formule de capsule de supplément de moelle osseuse est sans OGM, sans produits laitiers, sans soja et sans gluten. Cette formule de superaliment bovin à base de moelle osseuse est également exempte d'hormones, de liants ou d'agents d'écoulement.
  • Le supplément Codeage Grass-Fed Bone Marrow est fabriqué aux États-Unis avec des ingrédients mondiaux dans une installation certifiée cGMP pour la qualité et la pureté.

Supplement Facts

Supplement Facts

Ingredients

Extrait d'os nourri à l'herbe (bovin ; matrice osseuse, moelle et cartilage) (sans ESB). Autres ingrédients : Capsule de méthylcellulose.

Suggested Use

Les adultes prennent 6 capsules par jour selon les directives d'un professionnel de la santé avec 8 onces d'eau ou votre boisson préférée. Peut être pris avec ou sans nourriture.

ATTENTION : Ne dépassez pas la dose recommandée. Les femmes enceintes ou allaitantes, les enfants de moins de 18 ans et les personnes souffrant d'un problème de santé connu doivent consulter un médecin avant d'utiliser ce produit ou tout complément alimentaire. Veuillez faire preuve de prudence si vous avez des allergies ou des sensibilités à l’un des ingrédients répertoriés. Tenir hors de portée des enfants et des animaux de compagnie. Ne pas utiliser si le sceau de sécurité est endommagé ou manquant. Conservez dans un endroit frais et sec. Utilisez ce produit uniquement comme complément alimentaire. Ne pas utiliser pour la réduction de poids.

References

Adam, M., Musilova, J., Krabcova, M., Brettschneider, I., Pesakova, V., & Deyl, Z. (1980). Effect of cartilage bone marrow extract on the metabolism of collagen in osteoarthrotic cartilage. Pharmacology, 21(1), 5358. DOI: 10.1159/000137415

Zhong, Z., Wheeler, M. D., Li, X., Froh, M., Schemmer, P., Yin, M., Bunzendaul, H., Bradford, B., & Lemasters, J. J. (2003). L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current opinion in clinical nutrition and metabolic care, 6(2), 229240. DOI: 10.1097/00075197-200303000-00013

Niu, Y. C., Feng, R. N., Hou, Y., Li, K., Kang, Z., Wang, J., Sun, C. H., & Li, Y. (2012). Histidine and arginine are associated with inflammation and oxidative stress in obese women. The British journal of nutrition, 108(1), 5761. DOI: 10.1017/S0007114511005289

Towheed, T. E., Maxwell, L., Anastassiades, T. P., Shea, B., Houpt, J., Robinson, V., Hochberg, M. C., & Wells, G. (2005). Glucosamine therapy for treating osteoarthritis. The Cochrane database of systematic reviews, (2), CD002946. DOI: 10.1002/14651858.CD002946.pub2

Hochberg, M. C., Martel-Pelletier, J., Monfort, J., Möller, I., Castillo, J. R., Arden, N., Berenbaum, F., Blanco, F. J., Conaghan, P. G., Doménech, G., Henrotin, Y., Pap, T., Richette, P., Sawitzke, A., du Souich, P., Pelletier, J. P., & MOVES Investigation Group (2016). Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial... Annals of the rheumatic diseases, 75(1), 3744. DOI: 10.1136/annrheumdis-2014-206792

Richy, F., Bruyere, O., Ethgen, O., Cucherat, M., Henrotin, Y., & Reginster, J. Y. (2003). Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis. Archives of internal medicine, 163(13), 15141522. DOI: 10.1001/archinte.163.13.1514

Kumar, S., Sugihara, F., Suzuki, K., Inoue, N., & Venkateswarathirukumara, S. (2015). A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. Journal of the science of food and agriculture, 95(4), 702707. DOI: 10.1002/jsfa.6752

Trentham, D. E., Dynesius-Trentham, R. A., Orav, E. J., Combitchi, D., Lorenzo, C., Sewell, K. L., Hafler, D. A., & Weiner, H. L. (1993). Effects of oral administration of type II collagen on rheumatoid arthritis. Science (New York, N.Y.), 261(5129), 17271730. DOI: 10.1126/science.8378772

Jordan, H. A., Levitz, L. S., Utgoff, K. L., & Lee, H. L. (1981). Role of food characteristics in behavioral change and weight loss. Journal of the American Dietetic Association, 79(1), 2429. PMID: 7240603

Rubio, I. G., Castro, G., Zanini, A. C., & Medeiros-Neto, G. (2008). Oral ingestion of a hydrolyzed gelatin meal in subjects with normal weight and in obese patients: Postprandial effect on circulating gut peptides, glucose and insulin. Eating and weight disorders : EWD, 13(1), 4853. DOI: 10.1007/BF03327784

Hochstenbach-Waelen, A., Westerterp-Plantenga, M. S., Veldhorst, M. A., & Westerterp, K. R. (2009). Single-protein casein and gelatin diets affect energy expenditure similarly but substrate balance and appetite differently in adults. The Journal of nutrition, 139(12), 22852292. DOI: 10.3945/jn.109.110403

Zdzieblik, D., Oesser, S., Baumstark, M. W., Gollhofer, A., & König, D. (2015). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. The British journal of nutrition, 114(8), 12371245. DOI: 10.1017/S0007114515002810

Yamadera, Wataru & INAGAWA, Kentaro & Chiba, Shintaro & Bannai, Makoto & Takahashi, Michio & NAKAYAMA, Kazuhiko. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms. 5. 126 - 131. DOI: 10.1111/j.1479-8425.2007.00262.x

Kawai N, Sakai N, Okuro M, et al. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology. 2015;40(6):1405-1416. doi: 10.1038/npp.2014.326

Bannai M, Kawai N, Ono K, Nakahara K, Murakami N. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers. Front Neurol. 2012;3:61. Published 2012 Apr 18. doi: 10.3389/fneur.2012.00061

Vitamin A

Green AS, Fascetti AJ. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. ScientificWorldJournal. 2016;2016:7393620. doi: 10.1155/2016/7393620

Marjorie J Haskell, The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversionevidence in humans, The American Journal of Clinical Nutrition, Volume 96, Issue 5, November 2012, Pages 1193S1203S, DOI: 10.3945/ajcn.112.034850

De Pee, S., & Bloem, M. W. (2007). The bioavailability of (pro) vitamin A carotenoids and maximizing the contribution of homestead food production to combating vitamin A deficiency. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 77(3), 182192. DOI: 10.1024/0300-9831.77.3.182

De Pee, S., & West, C. E. (1996). Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. European journal of clinical nutrition, 50 Suppl 3, S38S53. PMID: 8841773

Van Loo-Bouwman, C. A., West, C. E., van Breemen, R. B., Zhu, D., Siebelink, E., Versloot, P., Hulshof, P. J., van Lieshout, M., Russel, F. G., Schaafsma, G., & Naber, T. H. (2009). Vitamin A equivalency of beta-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect. The British journal of nutrition, 101(12), 18371845. DOI: 10.1017/S0007114508131762

Vitamin B12

Lin, C. Y., Kuo, C. S., Lu, C. L., Wu, M. Y., & Huang, R. F. (2010). Elevated serum vitamin B(12) levels in association with tumor markers as the prognostic factors predictive for poor survival in patients with hepatocellular carcinoma. Nutrition and cancer, 62(2), 190197. DOI: 10.1080/01635580903305334

Majaj A. S. (1966). Vitamin E-responsive macrocytic anemia in protein-calorie malnutrition. Measurements of vitamin E, folic acid, vitamin C, vitamin B12 and iron. The American journal of clinical nutrition, 18(5), 362368. DOI: 10.1093/ajcn/18.5.362

Kwok, T., Tang, C., Woo, J., Lai, W. K., Law, L. K., & Pang, C. P. (1998). Randomized trial of the effect of supplementation on the cognitive function of older people with subnormal cobalamin levels. International journal of geriatric psychiatry, 13(9), 611616. DOI: 10.1002/(sici)1099-1166(199809)13:9<611::aid-gps832>3.0.co;2-o

Lonn, E., Yusuf, S., Arnold, M. J., Sheridan, P., Pogue, J., Micks, M., McQueen, M. J., Probstfield, J., Fodor, G., Held, C., Genest, J., Jr, & Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators (2006). Homocysteine lowering with folic acid and B vitamins in vascular disease. The New England journal of medicine, 354(15), 15671577. DOI: 10.1056/NEJMoa060900

Kwok, T., Lee, J., Law, C. B., Pan, P. C., Yung, C. Y., Choi, K. C., & Lam, L. C. (2011). A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clinical nutrition (Edinburgh, Scotland), 30(3), 297302. DOI: 10.1016/j.clnu.2010.12.004

Clarke R. (2000). Lowering blood homocysteine with folic acid-based supplements: meta-analysis of randomised trials. Indian heart journal, 52(7 Suppl), S59S64. PMID: 11339443

Ma, E., Iwasaki, M., Kobayashi, M., Kasuga, Y., Yokoyama, S., Onuma, H., Nishimura, H., Kusama, R., & Tsugane, S. (2009). Dietary intake of folate, vitamin B2, vitamin B6, vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Japan. Nutrition and cancer, 61(4), 447456. DOI: 10.1080/01635580802610123

Malouf, R., & Areosa Sastre, A. (2003). Vitamin B12 for cognition. The Cochrane database of systematic reviews, (3), CD004326. DOI: 10.1002/14651858.CD004326

Malouf, R., & Grimley Evans, J. (2008). Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. The Cochrane database of systematic reviews, (4), CD004514. DOI: 10.1002/14651858.CD004514.pub2

McNulty, H., Pentieva, K., Hoey, L., & Ward, M. (2008). Homocysteine, B-vitamins and CVD. The Proceedings of the Nutrition Society, 67(2), 232237. DOI: 10.1017/S0029665108007076

Chen, K. J., Pan, W. H., Yang, F. L., Wei, I. L., Shaw, N. S., & Lin, B. F. (2005). Association of B vitamins status and homocysteine levels in elderly Taiwanese. Asia Pacific journal of clinical nutrition, 14(3), 250255. PMID: 16169836

Iron

Lieu, P. T., Heiskala, M., Peterson, P. A., & Yang, Y. (2001). The roles of iron in health and disease. Molecular aspects of medicine, 22(1-2), 187. DOI: 10.1016/s0098-2997(00)00006-6

Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 19(2), 164174. PMCID: PMC3999603

Toxqui, L., De Piero, A., Courtois, V., Bastida, S., Sánchez-Muniz, F. J., & Vaquero, M. P. (2010). Deficiencia y sobrecarga de hierro: implicaciones en el estado oxidativo y la salud cardiovascular [Iron deficiency and overload. Implications in oxidative stress and cardiovascular health]. Nutricion hospitalaria, 25(3), 350365. PMID: 20593115

Macdougall IC. Intravenous iron therapy in patients with chronic kidney disease: recent evidence and future directions. Clin Kidney J. 2017;10(Suppl 1):i16-i24. doi: 10.1093/ckj/sfx043

Chung M, Moorthy D, Hadar N, et al. Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012 Oct. (Comparative Effectiveness Reviews, No. 83.)

Berns J. S. (2017). Interpretation of the Kidney Disease: Improving Global Outcomes guidelines for iron therapy: commentary and emerging evidence. Clinical kidney journal, 10(Suppl 1), i3i8. DOI: 10.1093/ckj/sfx042

Rubeor A, Goojha C, Manning J, White J. Does Iron Supplementation Improve Performance in Iron-Deficient Nonanemic Athletes?. Sports Health. 2018;10(5):400-405. doi: 10.1177/1941738118777488

Conjugated Linoleic Acid (CLA)

Moya-Camarena, S. Y., Vanden Heuvel, J. P., Blanchard, S. G., Leesnitzer, L. A., & Belury, M. A. (1999). Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. Journal of lipid research, 40(8), 14261433. PMID: 10428978

Rainer, L., & Heiss, C. J. (2004). Conjugated linoleic acid: health implications and effects on body composition. Journal of the American Dietetic Association, 104(6), 9631032. DOI: 10.1016/j.jada.2004.03.016

Fischer-Posovszky, P., Kukulus, V., & Wabitsch, M. (2008). Konjugierte Linolsäuren (CLA) und ihre Bedeutung für die Reduktion des Körperfetts. Eine kritische Betrachtung der momentanen Datenlage [Conjugated linoleic acids (CLA) and their relevance in the reduction of body fat. A critical review of the currently available data]. MMW Fortschritte der Medizin, 149 Suppl 4, 128131. PMID: 18402234

Banni S. (2002). Conjugated linoleic acid metabolism. Current opinion in lipidology, 13(3), 261266. DOI: 10.1097/00041433-200206000-00005

Fritsche, J. and Steinhart, H. (1998), Analysis, occurrence, and physiological properties of trans fatty acids (TFA) with particular emphasis on conjugated linoleic acid isomers (CLA) a review. Fett/Lipid, 100: 190-210. doi:10.1002/(SICI)1521-4133(199806)100:6<190::AID-LIPI190>3.0.CO;2-5

Gebauer, S. K., Chardigny, J. M., Jakobsen, M. U., Lamarche, B., Lock, A. L., Proctor, S. D., & Baer, D. J. (2011). Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Advances in nutrition (Bethesda, Md.), 2(4), 332354. DOI: 10.3945/an.111.000521

Mozaffarian, D., Aro, A., & Willett, W. C. (2009). Health effects of trans-fatty acids: experimental and observational evidence. European journal of clinical nutrition, 63 Suppl 2, S5S21. DOI: 10.1038/sj.ejcn.1602973

Bendsen, N. T., Christensen, R., Bartels, E. M., & Astrup, A. (2011). Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. European journal of clinical nutrition, 65(7), 773783. DOI: 10.1038/ejcn.2011.34

Dhiman, T. R., Nam, S. H., & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical reviews in food science and nutrition, 45(6), 463482. DOI: 10.1080/10408390591034463

Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Journal of dairy science, 82(10), 21462156. DOI: 10.3168/jds.S0022-0302(99)75458-5

Ritzenthaler, K. L., McGuire, M. K., Falen, R., Shultz, T. D., Dasgupta, N., & McGuire, M. A. (2001). Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. The Journal of nutrition, 131(5), 15481554. DOI: 10.1093/jn/131.5.1548

Kramer, J. K., Cruz-Hernandez, C., Deng, Z., Zhou, J., Jahreis, G., & Dugan, M. E. (2004). Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. The American journal of clinical nutrition, 79(6 Suppl), 1137S1145S. DOI: 10.1093/ajcn/79.6.1137S

Bissonauth V, Chouinard Y, Marin J, et al. The effects of t10,c12 CLA isomer compared with c9,t11 CLA isomer on lipid metabolism and body composition in hamsters. The Journal of Nutritional Biochemistry. 2006 Sep;17(9):597-603. DOI: 10.1016/j.jnutbio.2005.10.010 

Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. Journal of Food Composition and Analysis : an Official Publication of the United Nations University, International Network of Food Data Systems. 1992 Sep;5(3):185-197. DOI: 10.1016/0889-1575(92)90037-k 

Miner, J. L., Cederberg, C. A., Nielsen, M. K., Chen, X., & Baile, C. A. (2001). Conjugated linoleic acid (CLA), body fat, and apoptosis. Obesity research, 9(2), 129134. DOI: 10.1038/oby.2001.16

Evans, M., Lin, X., Odle, J., & McIntosh, M. (2002). Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. The Journal of nutrition, 132(3), 450455. DOI: 10.1093/jn/132.3.450

Blankson, H., Stakkestad, J. A., Fagertun, H., Thom, E., Wadstein, J., & Gudmundsen, O. (2000). Conjugated linoleic acid reduces body fat mass in overweight and obese humans. The Journal of nutrition, 130(12), 29432948. DOI: 10.1093/jn/130.12.2943

Chen, S. C., Lin, Y. H., Huang, H. P., Hsu, W. L., Houng, J. Y., & Huang, C. K. (2012). Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition (Burbank, Los Angeles County, Calif.), 28(5), 559565. DOI: 10.1016/j.nut.2011.09.008

Watras, A. C., Buchholz, A. C., Close, R. N., Zhang, Z., & Schoeller, D. A. (2007). The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. International journal of obesity (2005), 31(3), 481487. DOI: 10.1038/sj.ijo.0803437

Whigham, L. D., Watras, A. C., & Schoeller, D. A. (2007). Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. The American journal of clinical nutrition, 85(5), 12031211. DOI: 10.1093/ajcn/85.5.1203

Biotin

Glynis A. A Double-blind, Placebo-controlled Study Evaluating the Efficacy of an Oral Supplement in Women with Self-perceived Thinning Hair. J Clin Aesthet Dermatol. 2012;5(11):28-34. PMID: 23198010

Janos Zempleni, Yousef I Hassan & Subhashinee SK Wijeratne (2008) Biotin and biotinidase deficiency, Expert Review of Endocrinology & Metabolism, 3:6, 715-724, DOI: 10.1586/17446651.3.6.715

Patel DP, Swink SM, Castelo-Soccio L. A Review of the Use of Biotin for Hair Loss. Skin Appendage Disord. 2017;3(3):166169. doi: 10.1159/000462981

Patel DP, Swink SM, Castelo-Soccio L. A Review of the Use of Biotin for Hair Loss. Skin Appendage Disord. 2017;3(3):166169. doi: 10.1159/000462981

S. Daniells and G. Hardy, Hair loss in long-term or home parenteral nutrition: are micronutrient deficiencies to blame? Current Opinion in Clinical Nutrition & Metabolic Care, vol. 13, no. 6, pp. 690697, November 2010. doi: 10.1097/MCO.0b013e32833ece02

Zempleni J, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab. 2008;3(6):715724. doi: 10.1586/17446651.3.6.715

2008;3(6):715724. doi: 10.1586/17446651.3.6.715

Sparavigna A, Tenconi B, La Penna L. Efficacy and tolerability of a biomineral formulation for treatment of onychoschizia: a randomized trial. Clin Cosmet Investig Dermatol. 2019;12:355362. Published 2019 May 13. doi: 10.2147/CCID.S187305

Lipner, S. R., & Scher, R. K. (2018). Biotin for the treatment of nail disease: what is the evidence?. The Journal of dermatological treatment, 29(4), 411414. DOI: 10.1080/09546634.2017.1395799

Victor E. Colombo, Françoise Gerber, Max Bronhofer, George L. Floersheim. Treatment of brittle fingernails and onychoschizia with biotin: Scanning electron microscopy. Colombo, Victor E. et al. Journal of the American Academy of Dermatology, Volume 23, Issue 6, 1127 1132. DOI: https://doi.org/10.1016/0190-9622(90)70345-I

Trüeb RM. Serum Biotin Levels in Women Complaining of Hair Loss. Int J Trichology. 2016;8(2):73-77. doi: 10.4103/0974-7753.188040

Floersheim G. L. (1989). Behandlung brüchiger Fingernägel mit Biotin [Treatment of brittle fingernails with biotin]. Zeitschrift fur Hautkrankheiten, 64(1), 4148. PMID: 2648686

Hochman, L. G., Scher, R. K., & Meyerson, M. S. (1993). Brittle nails: response to daily biotin supplementation. Cutis, 51(4), 303305. PMID: 8477615

Scheinfeld, N., Dahdah, M. J., & Scher, R. (2007). Vitamins and minerals: their role in nail health and disease. Journal of drugs in dermatology : JDD, 6(8), 782787. PMID: 17763607

Codeage Grass-Fed Bone Marrow

Du pâturage au pouvoir.

Codeage Bone Marrow est un supplément de moelle osseuse de bœuf élevé au pâturage et nourri à l'herbe. Lyophilisé, non dégraissé et desséché. Extrait d'os entier à spectre complet (bovin, matrice osseuse, moelle, cartilage) pour fournir une source de nutriments présents dans la moelle osseuse. Sans OGM, sans produits laitiers, sans soja et sans gluten. Fabriqué aux États-Unis dans une usine certifiée cGMP.

UTILISATION SUGGÉRÉE.

Les adultes prennent 6 capsules par jour selon les directives d'un professionnel de la santé avec 8 onces d'eau ou votre boisson préférée. Peut être pris avec ou sans nourriture.

VOIR AVERTISSEMENT

ATTENTION : Ne dépassez pas la dose recommandée. Les femmes enceintes ou allaitantes, les enfants de moins de 18 ans et les personnes souffrant d'un problème de santé connu doivent consulter un médecin avant d'utiliser ce produit ou tout complément alimentaire. Veuillez faire preuve de prudence si vous avez des allergies ou des sensibilités à l’un des ingrédients répertoriés. Tenir hors de portée des enfants et des animaux de compagnie. Ne pas utiliser si le sceau de sécurité est endommagé ou manquant. Conservez dans un endroit frais et sec. Utilisez ce produit uniquement comme complément alimentaire. Ne pas utiliser pour la réduction de poids.

DÉTAILS SUPPLÉMENTAIRES.

Moelle osseuse nourrie à l'herbe, y compris la matrice osseuse et le cartilage
Voir les références

Les références

Adam, M., Musilova, J., Krabcova, M., Brettschneider, I., Pesakova, V., & Deyl, Z. (1980). Effect of cartilage bone marrow extract on the metabolism of collagen in osteoarthrotic cartilage. Pharmacology, 21(1), 5358. DOI: 10.1159/000137415

Zhong, Z., Wheeler, M. D., Li, X., Froh, M., Schemmer, P., Yin, M., Bunzendaul, H., Bradford, B., & Lemasters, J. J. (2003). L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current opinion in clinical nutrition and metabolic care, 6(2), 229240. DOI: 10.1097/00075197-200303000-00013

Niu, Y. C., Feng, R. N., Hou, Y., Li, K., Kang, Z., Wang, J., Sun, C. H., & Li, Y. (2012). Histidine and arginine are associated with inflammation and oxidative stress in obese women. The British journal of nutrition, 108(1), 5761. DOI: 10.1017/S0007114511005289

Towheed, T. E., Maxwell, L., Anastassiades, T. P., Shea, B., Houpt, J., Robinson, V., Hochberg, M. C., & Wells, G. (2005). Glucosamine therapy for treating osteoarthritis. The Cochrane database of systematic reviews, (2), CD002946. DOI: 10.1002/14651858.CD002946.pub2

Hochberg, M. C., Martel-Pelletier, J., Monfort, J., Möller, I., Castillo, J. R., Arden, N., Berenbaum, F., Blanco, F. J., Conaghan, P. G., Doménech, G., Henrotin, Y., Pap, T., Richette, P., Sawitzke, A., du Souich, P., Pelletier, J. P., & MOVES Investigation Group (2016). Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial... Annals of the rheumatic diseases, 75(1), 3744. DOI: 10.1136/annrheumdis-2014-206792

Richy, F., Bruyere, O., Ethgen, O., Cucherat, M., Henrotin, Y., & Reginster, J. Y. (2003). Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis. Archives of internal medicine, 163(13), 15141522. DOI: 10.1001/archinte.163.13.1514

Kumar, S., Sugihara, F., Suzuki, K., Inoue, N., & Venkateswarathirukumara, S. (2015). A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. Journal of the science of food and agriculture, 95(4), 702707. DOI: 10.1002/jsfa.6752

Trentham, D. E., Dynesius-Trentham, R. A., Orav, E. J., Combitchi, D., Lorenzo, C., Sewell, K. L., Hafler, D. A., & Weiner, H. L. (1993). Effects of oral administration of type II collagen on rheumatoid arthritis. Science (New York, N.Y.), 261(5129), 17271730. DOI: 10.1126/science.8378772

Jordan, H. A., Levitz, L. S., Utgoff, K. L., & Lee, H. L. (1981). Role of food characteristics in behavioral change and weight loss. Journal of the American Dietetic Association, 79(1), 2429. PMID: 7240603

Rubio, I. G., Castro, G., Zanini, A. C., & Medeiros-Neto, G. (2008). Oral ingestion of a hydrolyzed gelatin meal in subjects with normal weight and in obese patients: Postprandial effect on circulating gut peptides, glucose and insulin. Eating and weight disorders : EWD, 13(1), 4853. DOI: 10.1007/BF03327784

Hochstenbach-Waelen, A., Westerterp-Plantenga, M. S., Veldhorst, M. A., & Westerterp, K. R. (2009). Single-protein casein and gelatin diets affect energy expenditure similarly but substrate balance and appetite differently in adults. The Journal of nutrition, 139(12), 22852292. DOI: 10.3945/jn.109.110403

Zdzieblik, D., Oesser, S., Baumstark, M. W., Gollhofer, A., & König, D. (2015). Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. The British journal of nutrition, 114(8), 12371245. DOI: 10.1017/S0007114515002810

Yamadera, Wataru & INAGAWA, Kentaro & Chiba, Shintaro & Bannai, Makoto & Takahashi, Michio & NAKAYAMA, Kazuhiko. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms. 5. 126 - 131. DOI: 10.1111/j.1479-8425.2007.00262.x

Kawai N, Sakai N, Okuro M, et al. The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology. 2015;40(6):1405-1416. doi: 10.1038/npp.2014.326

Bannai M, Kawai N, Ono K, Nakahara K, Murakami N. The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers. Front Neurol. 2012;3:61. Published 2012 Apr 18. doi: 10.3389/fneur.2012.00061

Vitamin A

Green AS, Fascetti AJ. Meeting the Vitamin A Requirement: The Efficacy and Importance of β-Carotene in Animal Species. ScientificWorldJournal. 2016;2016:7393620. doi: 10.1155/2016/7393620

Marjorie J Haskell, The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversionevidence in humans, The American Journal of Clinical Nutrition, Volume 96, Issue 5, November 2012, Pages 1193S1203S, DOI: 10.3945/ajcn.112.034850

De Pee, S., & Bloem, M. W. (2007). The bioavailability of (pro) vitamin A carotenoids and maximizing the contribution of homestead food production to combating vitamin A deficiency. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 77(3), 182192. DOI: 10.1024/0300-9831.77.3.182

De Pee, S., & West, C. E. (1996). Dietary carotenoids and their role in combating vitamin A deficiency: a review of the literature. European journal of clinical nutrition, 50 Suppl 3, S38S53. PMID: 8841773

Van Loo-Bouwman, C. A., West, C. E., van Breemen, R. B., Zhu, D., Siebelink, E., Versloot, P., Hulshof, P. J., van Lieshout, M., Russel, F. G., Schaafsma, G., & Naber, T. H. (2009). Vitamin A equivalency of beta-carotene in healthy adults: limitation of the extrinsic dual-isotope dilution technique to measure matrix effect. The British journal of nutrition, 101(12), 18371845. DOI: 10.1017/S0007114508131762

Vitamin B12

Lin, C. Y., Kuo, C. S., Lu, C. L., Wu, M. Y., & Huang, R. F. (2010). Elevated serum vitamin B(12) levels in association with tumor markers as the prognostic factors predictive for poor survival in patients with hepatocellular carcinoma. Nutrition and cancer, 62(2), 190197. DOI: 10.1080/01635580903305334

Majaj A. S. (1966). Vitamin E-responsive macrocytic anemia in protein-calorie malnutrition. Measurements of vitamin E, folic acid, vitamin C, vitamin B12 and iron. The American journal of clinical nutrition, 18(5), 362368. DOI: 10.1093/ajcn/18.5.362

Kwok, T., Tang, C., Woo, J., Lai, W. K., Law, L. K., & Pang, C. P. (1998). Randomized trial of the effect of supplementation on the cognitive function of older people with subnormal cobalamin levels. International journal of geriatric psychiatry, 13(9), 611616. DOI: 10.1002/(sici)1099-1166(199809)13:9<611::aid-gps832>3.0.co;2-o

Lonn, E., Yusuf, S., Arnold, M. J., Sheridan, P., Pogue, J., Micks, M., McQueen, M. J., Probstfield, J., Fodor, G., Held, C., Genest, J., Jr, & Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators (2006). Homocysteine lowering with folic acid and B vitamins in vascular disease. The New England journal of medicine, 354(15), 15671577. DOI: 10.1056/NEJMoa060900

Kwok, T., Lee, J., Law, C. B., Pan, P. C., Yung, C. Y., Choi, K. C., & Lam, L. C. (2011). A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clinical nutrition (Edinburgh, Scotland), 30(3), 297302. DOI: 10.1016/j.clnu.2010.12.004

Clarke R. (2000). Lowering blood homocysteine with folic acid-based supplements: meta-analysis of randomised trials. Indian heart journal, 52(7 Suppl), S59S64. PMID: 11339443

Ma, E., Iwasaki, M., Kobayashi, M., Kasuga, Y., Yokoyama, S., Onuma, H., Nishimura, H., Kusama, R., & Tsugane, S. (2009). Dietary intake of folate, vitamin B2, vitamin B6, vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Japan. Nutrition and cancer, 61(4), 447456. DOI: 10.1080/01635580802610123

Malouf, R., & Areosa Sastre, A. (2003). Vitamin B12 for cognition. The Cochrane database of systematic reviews, (3), CD004326. DOI: 10.1002/14651858.CD004326

Malouf, R., & Grimley Evans, J. (2008). Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. The Cochrane database of systematic reviews, (4), CD004514. DOI: 10.1002/14651858.CD004514.pub2

McNulty, H., Pentieva, K., Hoey, L., & Ward, M. (2008). Homocysteine, B-vitamins and CVD. The Proceedings of the Nutrition Society, 67(2), 232237. DOI: 10.1017/S0029665108007076

Chen, K. J., Pan, W. H., Yang, F. L., Wei, I. L., Shaw, N. S., & Lin, B. F. (2005). Association of B vitamins status and homocysteine levels in elderly Taiwanese. Asia Pacific journal of clinical nutrition, 14(3), 250255. PMID: 16169836

Iron

Lieu, P. T., Heiskala, M., Peterson, P. A., & Yang, Y. (2001). The roles of iron in health and disease. Molecular aspects of medicine, 22(1-2), 187. DOI: 10.1016/s0098-2997(00)00006-6

Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 19(2), 164174. PMCID: PMC3999603

Toxqui, L., De Piero, A., Courtois, V., Bastida, S., Sánchez-Muniz, F. J., & Vaquero, M. P. (2010). Deficiencia y sobrecarga de hierro: implicaciones en el estado oxidativo y la salud cardiovascular [Iron deficiency and overload. Implications in oxidative stress and cardiovascular health]. Nutricion hospitalaria, 25(3), 350365. PMID: 20593115

Macdougall IC. Intravenous iron therapy in patients with chronic kidney disease: recent evidence and future directions. Clin Kidney J. 2017;10(Suppl 1):i16-i24. doi: 10.1093/ckj/sfx043

Chung M, Moorthy D, Hadar N, et al. Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012 Oct. (Comparative Effectiveness Reviews, No. 83.)

Berns J. S. (2017). Interpretation of the Kidney Disease: Improving Global Outcomes guidelines for iron therapy: commentary and emerging evidence. Clinical kidney journal, 10(Suppl 1), i3i8. DOI: 10.1093/ckj/sfx042

Rubeor A, Goojha C, Manning J, White J. Does Iron Supplementation Improve Performance in Iron-Deficient Nonanemic Athletes?. Sports Health. 2018;10(5):400-405. doi: 10.1177/1941738118777488

Conjugated Linoleic Acid (CLA)

Moya-Camarena, S. Y., Vanden Heuvel, J. P., Blanchard, S. G., Leesnitzer, L. A., & Belury, M. A. (1999). Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. Journal of lipid research, 40(8), 14261433. PMID: 10428978

Rainer, L., & Heiss, C. J. (2004). Conjugated linoleic acid: health implications and effects on body composition. Journal of the American Dietetic Association, 104(6), 9631032. DOI: 10.1016/j.jada.2004.03.016

Fischer-Posovszky, P., Kukulus, V., & Wabitsch, M. (2008). Konjugierte Linolsäuren (CLA) und ihre Bedeutung für die Reduktion des Körperfetts. Eine kritische Betrachtung der momentanen Datenlage [Conjugated linoleic acids (CLA) and their relevance in the reduction of body fat. A critical review of the currently available data]. MMW Fortschritte der Medizin, 149 Suppl 4, 128131. PMID: 18402234

Banni S. (2002). Conjugated linoleic acid metabolism. Current opinion in lipidology, 13(3), 261266. DOI: 10.1097/00041433-200206000-00005

Fritsche, J. and Steinhart, H. (1998), Analysis, occurrence, and physiological properties of trans fatty acids (TFA) with particular emphasis on conjugated linoleic acid isomers (CLA) a review. Fett/Lipid, 100: 190-210. doi:10.1002/(SICI)1521-4133(199806)100:6<190::AID-LIPI190>3.0.CO;2-5

Gebauer, S. K., Chardigny, J. M., Jakobsen, M. U., Lamarche, B., Lock, A. L., Proctor, S. D., & Baer, D. J. (2011). Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Advances in nutrition (Bethesda, Md.), 2(4), 332354. DOI: 10.3945/an.111.000521

Mozaffarian, D., Aro, A., & Willett, W. C. (2009). Health effects of trans-fatty acids: experimental and observational evidence. European journal of clinical nutrition, 63 Suppl 2, S5S21. DOI: 10.1038/sj.ejcn.1602973

Bendsen, N. T., Christensen, R., Bartels, E. M., & Astrup, A. (2011). Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. European journal of clinical nutrition, 65(7), 773783. DOI: 10.1038/ejcn.2011.34

Dhiman, T. R., Nam, S. H., & Ure, A. L. (2005). Factors affecting conjugated linoleic acid content in milk and meat. Critical reviews in food science and nutrition, 45(6), 463482. DOI: 10.1080/10408390591034463

Dhiman, T. R., Anand, G. R., Satter, L. D., & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Journal of dairy science, 82(10), 21462156. DOI: 10.3168/jds.S0022-0302(99)75458-5

Ritzenthaler, K. L., McGuire, M. K., Falen, R., Shultz, T. D., Dasgupta, N., & McGuire, M. A. (2001). Estimation of conjugated linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. The Journal of nutrition, 131(5), 15481554. DOI: 10.1093/jn/131.5.1548

Kramer, J. K., Cruz-Hernandez, C., Deng, Z., Zhou, J., Jahreis, G., & Dugan, M. E. (2004). Analysis of conjugated linoleic acid and trans 18:1 isomers in synthetic and animal products. The American journal of clinical nutrition, 79(6 Suppl), 1137S1145S. DOI: 10.1093/ajcn/79.6.1137S

Bissonauth V, Chouinard Y, Marin J, et al. The effects of t10,c12 CLA isomer compared with c9,t11 CLA isomer on lipid metabolism and body composition in hamsters. The Journal of Nutritional Biochemistry. 2006 Sep;17(9):597-603. DOI: 10.1016/j.jnutbio.2005.10.010 

Chin SF, Liu W, Storkson JM, Ha YL, Pariza MW. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. Journal of Food Composition and Analysis : an Official Publication of the United Nations University, International Network of Food Data Systems. 1992 Sep;5(3):185-197. DOI: 10.1016/0889-1575(92)90037-k 

Miner, J. L., Cederberg, C. A., Nielsen, M. K., Chen, X., & Baile, C. A. (2001). Conjugated linoleic acid (CLA), body fat, and apoptosis. Obesity research, 9(2), 129134. DOI: 10.1038/oby.2001.16

Evans, M., Lin, X., Odle, J., & McIntosh, M. (2002). Trans-10, cis-12 conjugated linoleic acid increases fatty acid oxidation in 3T3-L1 preadipocytes. The Journal of nutrition, 132(3), 450455. DOI: 10.1093/jn/132.3.450

Blankson, H., Stakkestad, J. A., Fagertun, H., Thom, E., Wadstein, J., & Gudmundsen, O. (2000). Conjugated linoleic acid reduces body fat mass in overweight and obese humans. The Journal of nutrition, 130(12), 29432948. DOI: 10.1093/jn/130.12.2943

Chen, S. C., Lin, Y. H., Huang, H. P., Hsu, W. L., Houng, J. Y., & Huang, C. K. (2012). Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition (Burbank, Los Angeles County, Calif.), 28(5), 559565. DOI: 10.1016/j.nut.2011.09.008

Watras, A. C., Buchholz, A. C., Close, R. N., Zhang, Z., & Schoeller, D. A. (2007). The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. International journal of obesity (2005), 31(3), 481487. DOI: 10.1038/sj.ijo.0803437

Whigham, L. D., Watras, A. C., & Schoeller, D. A. (2007). Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans. The American journal of clinical nutrition, 85(5), 12031211. DOI: 10.1093/ajcn/85.5.1203

Biotin

Glynis A. A Double-blind, Placebo-controlled Study Evaluating the Efficacy of an Oral Supplement in Women with Self-perceived Thinning Hair. J Clin Aesthet Dermatol. 2012;5(11):28-34. PMID: 23198010

Janos Zempleni, Yousef I Hassan & Subhashinee SK Wijeratne (2008) Biotin and biotinidase deficiency, Expert Review of Endocrinology & Metabolism, 3:6, 715-724, DOI: 10.1586/17446651.3.6.715

Patel DP, Swink SM, Castelo-Soccio L. A Review of the Use of Biotin for Hair Loss. Skin Appendage Disord. 2017;3(3):166169. doi: 10.1159/000462981

Patel DP, Swink SM, Castelo-Soccio L. A Review of the Use of Biotin for Hair Loss. Skin Appendage Disord. 2017;3(3):166169. doi: 10.1159/000462981

S. Daniells and G. Hardy, Hair loss in long-term or home parenteral nutrition: are micronutrient deficiencies to blame? Current Opinion in Clinical Nutrition & Metabolic Care, vol. 13, no. 6, pp. 690697, November 2010. doi: 10.1097/MCO.0b013e32833ece02

Zempleni J, Hassan YI, Wijeratne SS. Biotin and biotinidase deficiency. Expert Rev Endocrinol Metab. 2008;3(6):715724. doi: 10.1586/17446651.3.6.715

2008;3(6):715724. doi: 10.1586/17446651.3.6.715

Sparavigna A, Tenconi B, La Penna L. Efficacy and tolerability of a biomineral formulation for treatment of onychoschizia: a randomized trial. Clin Cosmet Investig Dermatol. 2019;12:355362. Published 2019 May 13. doi: 10.2147/CCID.S187305

Lipner, S. R., & Scher, R. K. (2018). Biotin for the treatment of nail disease: what is the evidence?. The Journal of dermatological treatment, 29(4), 411414. DOI: 10.1080/09546634.2017.1395799

Victor E. Colombo, Françoise Gerber, Max Bronhofer, George L. Floersheim. Treatment of brittle fingernails and onychoschizia with biotin: Scanning electron microscopy. Colombo, Victor E. et al. Journal of the American Academy of Dermatology, Volume 23, Issue 6, 1127 1132. DOI: https://doi.org/10.1016/0190-9622(90)70345-I

Trüeb RM. Serum Biotin Levels in Women Complaining of Hair Loss. Int J Trichology. 2016;8(2):73-77. doi: 10.4103/0974-7753.188040

Floersheim G. L. (1989). Behandlung brüchiger Fingernägel mit Biotin [Treatment of brittle fingernails with biotin]. Zeitschrift fur Hautkrankheiten, 64(1), 4148. PMID: 2648686

Hochman, L. G., Scher, R. K., & Meyerson, M. S. (1993). Brittle nails: response to daily biotin supplementation. Cutis, 51(4), 303305. PMID: 8477615

Scheinfeld, N., Dahdah, M. J., & Scher, R. (2007). Vitamins and minerals: their role in nail health and disease. Journal of drugs in dermatology : JDD, 6(8), 782787. PMID: 17763607

Pure supériorité.

La pureté et la qualité sont primordiales. Chaque produit capture une essence véritable et authentique provenant de sources de premier ordre pour garantir une excellence inégalée.

Ingrédients mondiaux.

Les ingrédients choisis représentent le summum de l’excellence nutritionnelle et sont célébrés pour leurs profils nutritionnels élevés.

Approche moderne.

Fabriqué avec des ingrédients mondiaux et à l'aide d'équipements de pointe pour respecter les normes d'intégrité les plus élevées.

Remboursement sous 30 jours
Garantie

Livraison gratuite sur tous les États-Unis
Commande supérieure à $50

15 % de réduction et gratuit aux États-Unis
Expédition avec abonnement

Posez une question à Codeage IA Beta

Bonjour, je m'appelle Codeage AI, je suis ici pour vous aider uniquement avec des questions sur le produit que vous consultez. Qu’aimeriez-vous savoir sur cet article spécifique aujourd’hui ?
  • Expliquez moi plus sur ce produit
  • Quels sont les avantages de ce produit ?
  • Quels sont les ingrédients et y a-t-il des allergènes ?
  • Où est fabriqué ce produit ?
Error with your request.